Rpb4/7 facilitates RNA polymerase II CTD dephosphorylation

نویسندگان

  • Paula Allepuz-Fuster
  • Verónica Martínez-Fernández
  • Ana I. Garrido-Godino
  • Sergio Alonso-Aguado
  • Steven D. Hanes
  • Francisco Navarro
  • Olga Calvo
چکیده

The Rpb4 and Rpb7 subunits of eukaryotic RNA polymerase II (RNAPII) participate in a variety of processes from transcription, DNA repair, mRNA export and decay, to translation regulation and stress response. However, their mechanism(s) of action remains unclear. Here, we show that the Rpb4/7 heterodimer in Saccharomyces cerevisiae plays a key role in controlling phosphorylation of the carboxy terminal domain (CTD) of the Rpb1 subunit of RNAPII. Proper phosphorylation of the CTD is critical for the synthesis and processing of RNAPII transcripts. Deletion of RPB4, and mutations that disrupt the integrity of Rpb4/7 or its recruitment to the RNAPII complex, increased phosphorylation of Ser2, Ser5, Ser7 and Thr4 within the CTD. RPB4 interacted genetically with genes encoding CTD phosphatases (SSU72, FCP1), CTD kinases (KIN28, CTK1, SRB10) and a prolyl isomerase that targets the CTD (ESS1). We show that Rpb4 is important for Ssu72 and Fcp1 phosphatases association, recruitment and/or accessibility to the CTD, and that this correlates strongly with Ser5P and Ser2P levels, respectively. Our data also suggest that Fcp1 is the Thr4P phosphatase in yeast. Based on these and other results, we suggest a model in which Rpb4/7 helps recruit and potentially stimulate the activity of CTD-modifying enzymes, a role that is central to RNAPII function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub1 contacts the RNA polymerase II stalk to modulate mRNA synthesis

Biogenesis of messenger RNA is critically influenced by the phosphorylation state of the carboxy-terminal domain (CTD) in the largest RNA polymerase II (RNAPII) subunit. Several kinases and phosphatases are required to maintain proper CTD phosphorylation levels and, additionally, several other proteins modulate them, including Rpb4/7 and Sub1. The Rpb4/7 heterodimer, constituting the RNAPII sta...

متن کامل

Architecture of initiation-competent 12-subunit RNA polymerase II.

RNA polymerase (Pol) II consists of a 10-polypeptide catalytic core and the two-subunit Rpb4/7 complex that is required for transcription initiation. Previous structures of the Pol II core revealed a "clamp," which binds the DNA template strand via three "switch regions," and a flexible "linker" to the C-terminal repeat domain (CTD). Here we derived a model of the complete Pol II by fitting str...

متن کامل

Structure and mechanism of RNA polymerase II CTD phosphatases.

Recycling of RNA polymerase II (Pol II) after transcription requires dephosphorylation of the polymerase C-terminal domain (CTD) by the phosphatase Fcp1. We report the X-ray structure of the small CTD phosphatase Scp1, which is homologous to the Fcp1 catalytic domain. The structure shows a core fold and an active center similar to those of phosphotransferases and phosphohydrolases that solely s...

متن کامل

Transcription-independent RNA polymerase II dephosphorylation by the FCP1 carboxy-terminal domain phosphatase in Xenopus laevis early embryos.

The phosphorylation of the RNA polymerase II (RNAP II) carboxy-terminal domain (CTD) plays a key role in mRNA metabolism. The relative ratio of hyperphosphorylated RNAP II to hypophosphorylated RNAP II is determined by a dynamic equilibrium between CTD kinases and CTD phosphatase(s). The CTD is heavily phosphorylated in meiotic Xenopus laevis oocytes. In this report we show that the CTD undergo...

متن کامل

Genome-associated RNA polymerase II includes the dissociable Rpb4/7 subcomplex.

Yeast RNA polymerase (Pol) II consists of a 10-subunit core enzyme and the Rpb4/7 subcomplex, which is dispensable for catalytic activity and dissociates in vitro. To investigate whether Rpb4/7 is an integral part of DNA-associated Pol II in vivo, we used chromatin immunoprecipitation coupled to high resolution tiling microarray analysis. We show that the genome-wide occupancy profiles for Rpb7...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014